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The addition of a term linear in co allows a parabolic 
dispersion surface, as found for example in a ferro- 
magnet, to be treated. A constant term in the equation 
of the dispersion surface allows an energy gap at Q = 0. 
The result of these additions are further terms in equa- 
tion (A1) which becomes 

I {4 I(X°)= exp - ~1 ~ [XiA"Xi  
1 1=1 

+ilt(X ° + X,)B,,(X~ + Xj)] 

+ i,u(T(X~ + X4) + H) dX~ (A4) 
i 

where T and H are constant coefficients. 
The result .of these integrations is again of the form 

of equation (A2) and the values of E and F are as before 
except that 
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and 
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- i/t(H + Too). 
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Neutron Diffraction Effects due to the Lattice Displacement 
of a Vibrating Quartz Single Crystal 
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The time modulation of neutrons diffracted by a quartz single crystal is investigated. The experimental re- 
suits agree with the aberration and with the Doppler effect caused during neutron diffraction by vibrations 
of a single crystal. 

Introduction 

In diffraction experiments, neutrons with a wavelength 
of 2 = 1 to 2 A are conventionally used. These neutrons 
with velocities of 4 x 105 to 2 x 105 cm.sec -1 are also suit- 
able for the investigation of dynamical effects together 
with the displacement of crystallographic planes and 

its influence upon the process of neutron diffraction. 
These dynamical effects are caused by two physical 
processes. The first is the vector addition of neutron 
velocity and the velocity of lattice-plane displacement, 
i.e. the aberration effect; the second represents the rela- 
tive change of neutron wavelength, i.e. the Doppler ef- 
fect. They can be observed in the course of neutron 
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diffraction even for small velocities of the periodic dis- 
placement of crystallographic planes with respect to 
the neutron velocity. 

In the papers of Brockhouse (1961); Shull & Gin- 
grich (1964); Shull, Morash & Rogers (1968) and Ale- 
feld, Birr & Heidemann (1968), these effects were found 
to exist for the mechanical periodic motion of spe- 
cimens having velocities of diffraction lattice planes in 
the range 103 to 104 cm.sec -1. In the process of neutron 
diffraction by a vibrating quartz single crystal these ef- 
fects were first observed by Michalec, Chalupa, Pe- 
tr~ilka, GalociovS., Zelenka & Tich~ (1969). 

T h e o r e t i c a l  c o n s i d e r a t i o n s  

Consider a bar-shaped single crystal vibrating longitu- 
dinally in the direction of the y axis (Fig. 1). Here we 
c a n  write the amplitude of the vibrating specimen in 
the form (Cady, 1964) 

7~V 
u= u0 sin ~ -  sin o)t, (1) 

where u0 is the amplitude at the ends of the bar, l is the 
length of the bar and f=og/2rc is the resonance fre- 
quency. 

The velocity of the motion of crystallographic lattice 
planes of the bar in the direction of the y axis is then 
given by the relation 

v = vp cos cot, v~ = UoCO sin ~y --/  . ( 2 )  

If the diffraction lattice plane of the single crystal is 
moving with some velocity a change in the Bragg angle 
OB is to be expected. In the case when the direction of 
the velocity amplitude v~ is collinear with the reciprocal 
lattice vector ~, v~/vn~ 1 expresses the change of the 
diffraction angle OB in the form 

5t  = 5or cos cot (3) 
where 

plane (020) 
V. 

Y 

Fig. 1. Schematic arrangement for the neutron diffraction by 
a vibrating bar cut from a quartz single crystal with respect 
to the crystallographic system of coordinates in the way 
shown. 

6or = vp vp vp 1 - -  cos OR + - -  sin OR tan OR = (4) 
Vn Vn Vn COS OB 

which conforms with equation (1) of Shull et al. (1958). 
The first term of the equation (4) is due to aberration, 
the second one to the Doppler effect. 

The rocking curve of the single crystal can be ex- 
pressed in the form 

J(6,--J(0) exp ( -  ~ )  (5) 

where J(0) is the neutron intensity in the maximum of 
the rocking curve, 50 = 0-OB is the deviation from the 
Bragg angle OB and o- is connected with the full width 
w of the rocking curve at half maximum intensity by 
the relation 

w = 2a(21n2) l/z . (6) 

The influence of the periodic displacement of the 
vibrating bar on the deviation 6 can be described by 
the relation 

5 = 60 + fit = 50 + fi0t cos oot (7) 

in which 50 is a time-independent deviation from the 
Bragg angle given by the position of the diffracting 
lattice plane and fi0t is given by equation (4). The in- 
fluence of the periodic time variation on 6, i.e. of the 
time modulation on the neutron intensity J(6, t) can be 
described by analogy to (5) by the corresponding ex- 
pression 

J(5, t )=J(O, t )exp [ - -  ( 6 ° + 5 t ) 2 ]  
- -20 .2  -- ] . (8) 

The value J(0, t) represents the time modulated max- 
imum intensity of the rocking curve in the position 
6o = 0 (Petr~ilka, 1968). 

Applying the following relations (Jahnke, Emde & 
LSsch, 1960; Jeffreys & Jeffreys, 1946) 

+co 
exp (ix sin O)= ~ Jn(x) exp (/nO), (9) 

[ n = t  - -  oo  

Jn(iz)=exp n 7  i In(z), (10) 

where Jn(x) and In(z) are Bessel functions of the nth 
order of the real and imaginary argument. Substituting 
for 5t from equation (3), equation (8) becomes 

J(6, t)=J(6t, t) exp ( -  2a 2 ] 
+ o  

x Z In exp[/n(cot+rc)] (11) 
n = - - e o  

where 

J(St, t)=J(O,t) exp ( -  5~t 

x ~ Im \4a2 ! exp[im(2cot+n)]. (12) 
? n ~ - - O 0  
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As can be seen from equations (11) and (12), supple- 
mentary modulations occur in addition to the time mo- 
dulation of diffracted neutrons. At the maximum of the 
rocking curve (60=0) the supplementary modulation 
components are a2 cos 2cot, a4 cos 4cot, a6 cos 6cot, etc. 
In positions where 60~ 0 still further modulation com- 
ponents occur, bl cos cot, bz cos 2cot, b3 cos 3cot, etc., 
which are due to the influence of aberration and the 
Doppler effect on the time modulation of neutrons dif- 
fracted by a vibrating single crystal. 

Experimental results d 
z 
Z 

Neutron diffraction by a vibrating quartz single crystal = < 
was investigated using the double-axis spectrometer ~' 
(Michalec, Vavfin, Chalupa & Vivra, 1967). A beam ~- 
of monoenergetic neutrons with wavelength 2 = 1.54 A, 
impinging the investigated specimen was diffracted by o 
the plane (020) in the position of a symmetric trans- o 
mission and detected by a thin [ZnS(Ag) + I°B] detector. 
The centre of the neutron beam impinging the lattice 
plane was at a distance y = 3l/8 from the centre of the 
vibrating quartz bar. The time modulation of diffracted 
neutrons was measured by a multichannel analyzer by 
applying the time digital converter with the channel 
width of 1/zs. 

The quartz single crystal was bar shaped having di- 
mensions of 3 mm in the X direction, 120 mm in the 
Y direction and 14 mm in the Z direction (Fig. 1). The 
bar was piezoelectrically excited in the series resor aa~e 
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Fig. 2. Rocking curve for the (020) diffraction of the vibrating 
quartz single crystal. In the positions marked by arrows 
measurements of the time modulation of diffracted neutrons 
were made. 
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6o Fig. 3. Time modulation of neutrons diffracted by vibrating 
quartz single crystal in the position with (a) 6 0 = - 5 " 4 ' ,  
(b) 60=0. The smooth curves were obtained from experi- 
mental values of neutron intensities by the method of mini- 
mum squares. 
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Fig. 3 (cont.) (c) 3o = + 6"7', 

of the fundamental mode of vibration having the reso- 
nance frequency f = 2 2 . 6  kHz. The high frequency cur- 
rent flowing across the bar was maintained constant for 
all measurements and equal to i=  2.1 mA. 

Fig. 2 shows the rocking curve of the vibrating 
quartz single crystal. The full width at half maximum 
intensity of this curve is equal to w = 12 rain of arc. For 
the non-vibrating single crystal the full-width of the 
rocking curve in our experimental arrangement was 
equal to that for the vibrating crystal (Chalupa, Micha- 
lec, Petr2ilka,Tichy &Zelenka, 1968).The measurements 
of the time modulation of diffracted neutrons was per- 
formed in points marked on the rocking curve. 
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Fig. 4. Experimental values of r as a function of &0. The 
dashed line shows the relationship between r and &0. 

Fig. 3 illustrates the measurements of the time mo- 
dulation of neutrons diffracted by a vibrating single 
crystal in positions ~0 = - 5.4' [Fig. 3(a)], rio = 0 [Fig. 3(b)] 
and rio = + 6.7' [Fig. 3(c)]. The intensity of neutrons for 
a non-vibrating single crystal is time independent in all 
positions and about four times smaller than the mean 
intensity of neutrons diffracted by a vibrating single 
crystal. 

Discussion 

Fig. 3 shows that the curve of the time modulation of 
the neutron beam has a quite different course of taken 
at different points of the rocking curve, the position of 
whicb is characterized by the value of rio. This value is 
due to aberration and the Doppler effect on the 
diffraction of neutrons by a vibrating single crystal. 

At the maximum of the rocking curve (rio = 0) it is 
possible to express the time modulation of neutrons by 
equation (12). Since all minima of the modulation 
curve are equal, we can write the relation 

J(O, cot = 0) = J(0, cot = zc). 

The time modulation of neutrons diffracted in posi- 
tions with &0-¢0 may be described by equation (11). 
The experimental data show that significant differences 
exist in the depth of minima, for which cot=0 and 
cot = rr. This is caused by the maximum influence of the 
aberration and the Doppler effects at these points, as 
follows from equation (3). 

If we write the logarithm of the relation of neutron 
intensities in these points we obtain the following result 

J(ri, cot = 0) 2ri0. &0t 
r = l n  J(&,cot=zc) - a 2 (13) 

The dependence r=r(ri0) is shown in Fig. 4. Relation 
(13) predicts the linear relation between the values of 
60 characterizing the given positions and the corre- 
sponding values of r. The experimental results, as can 
be seen from Fig. 4, show some nonlinearity, which can 
be explained by the fact, that the rocking curve (Fig. 2) 
does not precisely fulfil the form of a Gaussian distri- 
bution, described by the relation (5). 

From expression (13) it is possible to calculate the 
values of riot. If we consider the asymmetry of the rock- 
ing curve of the single crystal (w/2 = 7' for &0 > 0 and 
w/2=5 '  for ri0<0) we obtain the value ri0t=0.90+ 
0.09 rain of arc. For the obtained values of &0t we can 
use equation (4) to calculate the velocity vu of the mo- 
tion of crystallographic lattice planes. In this case v~o= 
63 + 6 cm.sec -1 for the position y = 31/8 from the quartz 
bar centre. At the ends of the quartz bar y = _+ l/2 and 
we obtain, for ~J0 = u0co, the value ofO0 = 68 + 7 cm.sec-L 

From equation (2) we can determine the amplitude 
u0 of vibrations of the specimen under investigation. 
For the measured bar we obtained the value fi0 = (4.8 + 
0.5) x 10 -4 cm to which corresponds the relative change 
in the bar length 

z ] ' i / / : ( 0 " 8 0  + 0 " 0 8 )  X 10  - 4  . 



414 LATTICE D I S P L A C E M E N T  OF A V I B R A T I N G  Q U A R T Z  S I N G L E  CRYSTAL 

It follows from our experimental data that the meas- 
urements of the time modulation of a neutron beam 
gives a real possibility of determining the dynamical 
effects together with a very small velocity of motion of 
crystallographic lattice planes of the specimen under 
investigation. This method can be also applied for the 
measurements of amplitudes of vibrations of single 
crystals, excited piezoelectrically or by magnetostriction. 
The velocities of motion of crystallographic lattice 
planes are of the order of several tens of cm.sec -1, and 
the corresponding amplitudes in the range of 10 -4 cm. 

The authors wish to thank Doc. Ing. J. Zelenka and 
Doc. Dr J. Tich2~ for supl:lying us with quartz single 
crystals and Mr J. Vdvra for his valuable help through- 
out the measurements. 
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X-ray Diffuse Scattering from NaNbO3 as a Function of Temperature 
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A qualitative description of the X-ray diffuse scattering from NaNbO3 single crystals as a function of 
temperature up to 800°C is given. Two types of distinct diffuse scattering where observed in {I00} 
reciprocal planes and on (100)reciprocal axes. While the diffuse scattering in reciprocal planes shows 
no critical behaviour at the different phase transitions and can be attributed to a 'linear disorder' 
similar to that suggested earlier for KNbO3, the diffuse scattering on reciprocal axes is critical in the 
vicinity of the 641 °C phase transition. The atomic displacements involved with the linear disorder that 
persists up to 800°C are attributed to the niobium atoms; the critical planar disorder in the cubic phase 
is attributed to rotations of oxygen octahedra similar to those suggested for SrTiO3 and KMnF3. Both 
types of disorder exist in the cubic paraelectric phase. 

Introduction 

Many recent papers describe experiments in X-ray or 
neutron scattering from perovskite related compounds 
[SrTiO3 (Shirane & Yamada, 1969), KMnF3 (Minkie- 
wicz & Shirane, 1969; Minkiewicz, Fujii & Yamada, 
1970), LaA103 (Plakhty & Cochran, 1968; Axe & Shi- 
rane, 1969), KTaO3 (Shirane, Nathans & Minkiewicz, 
1967), PbTiO3 (Shirane, Axe, Harada & Remeika, 
1970), BaTiO3 (Harada & Honjo, 1967; Combs, Lam- 
bert & Guinier, 1968), KNbO3 (Combs, Lambert & 
Guinier, 1970a)]. Nevertheless, the distribution in the 
reciprocal space of the scattered intensity which pro- 

* Laboratoire associ6 au C.N.R.S. 

vides direct information on atomic displacements that 
are responsible for the scattering is only known with 
some precision in the cases of KNbO3 (Combs, Lam- 
bert & Guinier, 1970a) and BaTiO3 (Shirane, Axe & 
Harada, 1970; Combs et aL 1970a). These two crystals, 
which are isomorphous in all their phases, have struc- 
tures that always result from a slight distortion of the 
ideal perovskite unit cell; but they never show multiple- 
cell structures as can be found for example in SrTiO3 
(M/iller, 1958; Alefeld, 1969), WO3 (Ueda & Koba- 
yashi, 1963; Andersson, 1963), NaNbO3 (Vousden, 
1951; Bouillaud, 1968), or KMnF3 (Minkiewicz et al. 
1970; Beckman & Knox, 1961). Thus, it seemed of in- 
terest to study the distribution of the diffuse X-ray 
scattering as a function of temperature in such a mul- 


